Power Electronics -Key Technology for Renewable Energy Systems

Prof. Frede Blaabjerg Professor, IEEE Fellow fbl@et.aau.dk

Aalborg University Department of Energy Technology Aalborg, Denmark

www.corpe.et.aau.dk

Power Electronics -Key Technology for Renewable Energy Systems – Status and future

- Aalborg University, Department of Energy Technology, Denmark
- Renewable Energy in Denmark
- Power Electronics for Wind Turbines
- Power Electronics for Photovoltaics
- Challenges of Power Electronics in Renewable Energy Systems
- Conclusions

Aalborg University Department of Energy Technology, Denmark

Center of Reliable Power Electronics

Aalborg University - Denmark

Aalborg University - Campus

Department of Energy Technology

Energy production - distribution - consumption - control

Department of Energy Technology

E.T.

Renewable Energy in Denmark

Energy and Power Challenge

Four main challenges in energy

Sustainable energy production (backbone, weather based, storage) Energy efficiency Mobility Infrastructure

Different initiatives

EU Set-plan (20-20-20) and beyond Danish Climate Commision – Independent in 2050 Germany – no nuclear in the future (2022) Globally large activity

Renewable Electricity in Denmark

Key figures for proportion of renewable electricity (Data source: Energinet.dk) (*target value)					
Key figures	2010	2011	2020	2035	
Wind share of net generation in year	21.3%	29.4%	50% *		
Wind share of consumption in year	22.0%	28.3%			
RE share of net generation in year	32.8%	41.1%		100%*	
RE share of net consumption in year	33.8%	39.0%			

Center of Reliable Power Electronics

Energy and Power Challenge in DK

Very high coverage of distributed generation.

Center of Reliable Power Electronics

Development of Electric Power System in Denmark

(Picture Source: Danish Energy Agency)

(Picture Source: Danish Energy Agency)

From **Central** to **De-central** Power Generation

Center of Reliable Power Electronics

Power Electronics for Wind Turbines

Renewable Energy System

Important issues for power converters

Reliability/security of supply Efficiency, cost, volume, protection Control active and reactive power Ride-through operation and monitoring Power electronics enabling technology

Wind Turbine Development

Global installed wind capacity (up to 2012): 283 GW, 2012: 45 GW

Higher total capacity (59 % non-hydro renewables). Larger individual size (average 1.8 MW, up to 8 MW). More power electronics (up to 100 % rating coverage).

Center of Reliable Power Electronics

Requirements for Wind Turbine Systems

General Requirements & Specific Requirements

Center of Reliable Power Electronics

Grid Codes for Wind Turbines

Conventional power plants provide active and reactive power, inertia response, synchronizing power, oscillation damping, short-circuit capability and voltage backup during faults.

Wind turbine technology differs from conventional power plants regarding the converter-based grid interface and asynchronous operation

Grid code requirements today

- Active power control
- Reactive power control
- Frequency control
- Steady-state operating range
- Fault ride-through capability

Wind turbines are active power plants.

Power Grid Standards – Ride-Through Operation

Requirements during grid faults

Ia /Irated

Grid voltage dips vs. withstand time

Reactive current vs. Grid voltage dips

- Withstand extreme grid voltage dips.
- Contribute to grid recovery by injecting I_a.
- Higher power controllability of converter.

Dead band

Wind Turbine Concepts

Full-Rating

Power Converter

- Wound-rotor induction generator
- Variable pitch variable speed
- ±30% slip variation around synchronous speed
- Power converter (back to back/ direct AC/AC) in rotor circuit
- Variable pitch variable speed
- With/without gearbox
- ► Generator

Synchronous generator Permanent magnet generator Squirrel-cage induction generator

Power converter

Diode rectifier + boost DC/DC + inverter Back-to-back converter Direct AC/AC (e.g. matrix, cycloconverters)

GearBox/

Gearless

wind

SCIG WRSG / PMSG

PCC

External

grid

Transformer

FRPC-WT

Power Electronic Converters

Back-to-back VSC

Back-to-back two-level voltage source converter

- Proven technology
- Standard power devices (integrated)
- Decoupling between grid and generator (compensation for non-symmetry and other power quality issues)
- Need for major energy-storage in DC-link (reduced life-time and increased expenses)
- Power losses (switching and conduction losses)

Power Electronic Converters

Boost and Voltage Source Converter to grid

Current Source Inverter to grid

Power converters

Proven technologies today

Center of Reliable Power Electronics

E.T.

Multi-Level Topologies +6 MW

Half-bridge and open-winded transformer

Center of Reliable Power Electronics

Department of
ENERGY TECHNOLOGY

Multi-Level Topologies +6 MW

Half-bridge, five-level

Three-level and five-level

Center of Reliable Power Electronics

Multi-Level Topologies +6 MW

Medium frequency transformer

Stacked output converter

Control Structure for a Wind Turbine System

Power has to be controlled by means of the aerodynamic system and has to react based on a set-point given by a dispatched center or locally with the goal to maximize the power production based on the available wind power.

Current Development Example

Vestas Wind Systems A/S Denmark

Target market: Big offshore farms

Vestas V164 offshore turbine

Rated power: 8,000 kW Rotor diameter: 164 m Hub height: min. 105 m Turbine concept: medium-speed gearbox, variable speed, variable pitch, full-scale power converter Generator: permanent magnet

Center of Reliable Power Electronics

Current Development Example – Wind Farm

Horns Reef I 160 MW, Horns Reef II 209.3 MW

5.5 km Vestas V80–2.0 MW

Rotor Diameter Hub Height Weight Min/Max rotation speed Min/Nom/Max Wind Gear box Generator

80 m 60-100 m 227-303 tons 9/19 rounds/minute 4/16/25 m/s Yes (1:100.5) DFIG (4 pole – slip rings)

- 80 x 2MW (Vestas V80, in operation Dec 11, 2002)
- 91 x 2.3MW (Siemens SWT-2.3-93, in operation Sep 17, 2009)

Improved Performance of Wind Turbines

Variable speed wind turbine integrated with a battery storage system

Center of Reliable Power Electronics

Power Electronics for Photovoltaics

Photovoltaic System Development

Global installed PV capacity (up to 2012): 100 GW, 2012: 29 GW

More significant total capacity (21 % non-hydro renewables). Fast growth rate (60 % between 2007-2012).

Center of Reliable Power Electronics

Requirements for Photovoltaic Systems

General Requirements & Specific Requirements

PV System Configurations

- High efficiency mini-central (multi-string) PV inverters (8-15 kW) are also emerging for modular configuration in medium and high power PV systems
- Central inverters are available on market with very high power capacity (e.g. 750 kW by SMA)
- Transformerless PV inverters can achieve high efficiency with increasing popularity

PV Inverters Market Survey

Transformer-based

Transformerless-based

Source : Photon

100 98

96

94

92

90⊾ 0

80

60

20

0.08

0.06

0.04

0.02

0 🖏

Ó

1

Volume [m³]

Weight [kg]

1

- Transformerless

- LF-transformer

- HF-transformer

Efficiency [%]

Department of
ENERGY TECHNOLOGY

4

PV inverters P_{DC}<6.5kW

3

з

3

Power [kW]

5

5

5

6

6

E.T.

Q

00

2

PV Inverters with Boost Converter and Isolation

Both technologies are on the market! Efficiency: 93-95%

Center of Reliable Power Electronics

Transformerless PV Topologies with Boost Stage

Full Bridge Inverter with Boost Converter

Typical configuration

•Leakage current problem

•Time sharing configuration

·Boost with rectified sinus reference

Center of Reliable Power Electronics

Department of
ENERGY TECHNOLOGY

Single-Stage Transformerless PV Topology

Bipolar Modulation

- □ <u>No common mode voltage</u> \rightarrow V_{PE} free for high frequency \rightarrow low leakage current
- □ Max efficiency 96.5% due to reactive power exchange between the filter and C_{PV} during freewheeling and due to the fact that 2 switched are simultaneously switched every switching
- □ This topology is not special suited to transformerless PV inverter due to low efficiency!

Center of Reliable Power Electronics

High Efficiency Transformerless PV Topologies

H5 Transformerless Inverter (SMA)

- Efficiency of up to 98%
- Low leakage current and EMI
- Unipolar voltage accross the filter, leading to low core losses

H6 Transformerless Inverter (Ingeteam)

- High efficiency
- Low leakage current and EMI
- DC bypass switches rating: V_{dc}/2
- Unipolar voltage accross the filter

High Efficiency Transformerless PV Topologies

HERIC - Highly Efficient and Reliable Inverter Concept (Sunways)

- High efficiency of up to 97%
- Very low leakage current and EMI
- Low core losses

FB-ZVR – Full Bridge with a Zero Voltage Rectifier (T. Kerekes, etc)

- Efficiency of up to 96%
- Low leakage current and EMI
- Unipolar voltage accross the filter, leading to low core losses

NPC Topologies for PV Applications

Neutral clampled half-bridge

Conergy neutral point clampled inverter

- □ Three-level output. Requires double PV voltage input in comparison with FB.
- \Box The switching ripple in the current equals <u>1x</u> switching frequency \rightarrow high filtering needed
- □ Voltage across filter is unipolar → low core losses
- □ V_{PE} is equal $-V_{pv}/2$ without high frequency component \rightarrow low leakage current and EMI
- □ High max efficiency 98% due to <u>no</u> reactive power exchange, as reported by Danfoss Solar TripleLynx series (10/12.5/15 kW)

Control Structure for a PV System

Basic functions – all grid-tied inverters

- Grid current control
- DC voltage control
- Grid synchronization

PV specific functions – common for PV inverters

- Maximum power point tracking MPPT
- Anti-Islanding (VDE0126, IEEE1574, etc.)
- Grid monitoring
- Plant monitoring
- Sun tracking (mechanical MPPT)

Ancillary support – in effectiveness

- Voltage control
- Fault ride-through
- Power quality

. . .

Challenge of Power Electronics in Renewable Energy Systems

Cost of Energy (COE)

 $COE = \frac{C_{Cap} + C_{O\&M}}{E_{Annual}}$

 C_{Cap} – Capital cost $C_{O\&M}$ – Operation and main. cost E_{Annual} – Annual energy production

Determining factors for renewables

- Capacity growth
- Technology development

E.T.

Needs for Lower Cost of Wind Power

Different trends But the Cost of Energy will be reduced

Center of Reliable Power Electronics

Needs for Lower Cost of PV Power

US DOE cost reduction goals to achieve \$1/w by 2020.

(Source: Adapted from IRENA renewable energy technologies: cost analysis series -Solar Photovoltaics)

PV module cost should be reduced by 2/3 Power electronics needs also reduce cost by 1/2 Installation cost should be reduced by 2/3

Center of Reliable Power Electronics

SiC Devices

Center of Reliable Power Electronics

Department of
ENERGY TECHNOLOGY

First PV inverter based on SiC JFET

- SMA 20000TLHE-10 20 kW, 3 phase 99.2%
- Light weight 45 kg (1/2 of normal)
- Cooling minimized
- Conergy topology realized with Infineon modules
- SiC JFET with IGBT free whelling

Simpler topologies with SiC JFET

- Back to 2 level topologies!
- "Only" by doubling the switching frequency to 32 kHz, same efficiency of 98% as NPC-3L@16 kHz
- Half components count and lower footprint/weight
- Practical zero-reverse recovery with SiC diodes

Source B. Burger - Frunhofer

WBG Devices

Center of Reliable Power Electronics

Department of
ENERGY TECHNOLOGY

Failures of Power Electronic Systems

Field Experience of Wind Turbines – Normalized Downtime

(Source: Reliawind, Report on Wind Turbine Reliability Profiles - Field Data Reliability Analysis, 2011.)

Failures of Power Electronic Systems

Field Experience of Wind Turbines – Normalized Failure Rate

(Source: Reliawind, Report on Wind Turbine Reliability Profiles - Field Data Reliability Analysis, 2011.)

Failures of Power Electronic Systems

5 Years of Field Experience of a 3.5 MW PV Plant

Unscheduled maintenance events by subsystem. Unscheduled maintenance costs by subsystem. (ACD: AC Disconnects, DAS: Data Acquisition Systems)

(Data source: Moore, L. M. and H. N. Post, "Five years of operating experience at a large, utility-scale photovoltaic generating plant," Progress in Photovoltaics: Research and Applications 16(3): 249-259, 2008)

Critical Components in Power Electronic Systems

Failure root causes distribution for power electronic systems* (% may vary for different applications and designs)

*Data sources: Wolfgang E., "Examples for Failures in Power Electronics Systems," in *EPE Tutorial 'Reliability of Power Electronic Systems*', April 2007.

Center of Reliable Power Electronics

Approaches to Reduce Cost-of-Energy

$$COE = \frac{C_{Cap} + C_{O\&M}}{E_{Annual}}$$

 C_{Cap} – Capital cost $C_{O\&M}$ – Operation and main. cost E_{Annual} – Annual energy production

Approaches	Important and related factors	Potential
Lower C _{Cap}	Production / Policy	+
Lower C _{O&M}	Reliability / Design / Labor	++
Higher E _{annual}	Reliability / Capacity / Efficiency / Location	++++

Reliability is an efficient way to reduce COE – lower $C_{O\&M}$ & higher E_{annual} !

Shift of Reliability Analysis Approaches for PE

Reliability analysis of PE in the past

- Less dependent on mission profile
- Observations and statistics based
- Handbook/guideline calculation
- Testing under harsh conditions
- Hard to predict and control

Reliability analysis of PE in the future

- More considerations of mission profile
- Root cause based
- Failure mechanism modeling
- Robustness validations
- More predictable and controllable

Center of Reliable Power Electronics

Multi-disciplines for physics-of-failure approach

In 1974, William E. Newell defined power electronics as a technology based on multi-disciplines. Physics-of-failure approach for power electronics reliability is also based on multi-disciplinary knowledge.

Reliability prediction of power electronics

Lifetime prediction of IGBT in wind power converter

Rated output active power P_o	2 MW	
DC bus voltage V_{dc}	1.1 kV DC	
[*] Rated primary side voltage V_p	690 V rms	
Rated load current Iload	1.93 kA rms	
Fundamental frequency f_o	50 Hz	
Switching frequency f_c	1950 Hz	
Filter inductance L_f	132 µH (0.2 p.u.)	

* Line-to-line voltage in the primary windings of transformer.

Converter design

Wind and temperature profile –mission profiles.

Thermal stress of IGBT in different time-scales in WTS

1 year, 3 hours step

3 hours, 1 second step

0.2 second, 0. 01 millsec step

- Thermal stress is focused under different details and time constants.
- Just like the lenses with different focus lengths in photography.

Center of Reliable Power Electronics

Procedure for lifetime estimation of wind power converter

Long-term lifetime estimation:

- Influenced by environmental change. •
- Long term analysis up years. •••
- Larger time step are needed. •••
- Mission profile is translated to device • lifetime.

Time span: 3 hours, step: 1 second

- Influenced by mechanical behavior. •
- * Medium term analysis - hours.
- Moderate time step seconds. *
- More detailed models are necessary.

Strength models of IGBT (cycles to certain failure rate)

Power cycling lifetime as a function of ΔT_i and T_{im} 1E+9 100 1E+8 years per cycle cycles to failure 1E+7 @ 30s test time 1E+6 year Tjm=77,5°C 1E+5 Fim=90°C month Fim=102.5°C j,max=const.=150°C 1E+4 ΔT_i [K] 1000 10 100

Life time model from ABB

Life time model from Semikron

Lifetime of IGBT by long term thermal loading

Consumed life time vs. different failure mechanisms.

- ***** B solder Baseplate solder failures.
- C solder Chip solder failures.
- Bondwire Bond wire failures.
- B10 life time Lifetime when device has 10 % failure rate.

Summary of lifetime estimation in different time scales

Consumed life time vs. different failure mechanisms.

Consumed life time vs. different wind speeds.

Center of Reliable Power Electronics

Summary

Power Electronics for renewable energy : Wind Turbines and Photovoltaic Systems

- ► A solution for the long term future in society
- Cost of Energy should be further reduced
- Increased power production close to the consumption place
- Coordinated control of production and consumption
- ► Future grid configurations may be different but intelligent
- Systems should be able to run in on-grid and off-grid modes
- PV-plants will get same specifications as wind turbines
- ► Wind turbines have been the fastest growing in MW but PV will come
- Wind turbine technology better performance
 - Full scale power electronics
 - New generator concepts (e.g. PM, gearless)
 - Larger size lower cost per kWh
 - Reliability a key to lower cost of Energy

Power Electronics

enabling renewable energy into an intelligent grid

Center of Reliable Power Electronics

Department of
ENERGY TECHNOLOGY

References

- 1. H. Wang, M. Liserre, and F. Blaabjerg, "Toward reliable power electronics challenges, design tools and opportunities," IEEE Industrial Electronics Magazine, Jun. 2013 (in press).
- 2. H. Wang, F. Blaabjerg, and K. Ma, "Design for reliability of power electronic systems," in Proceedings of the Annual Conference of the IEEE Industrial Electronics Society (IECON), 2012, pp. 33-44.
- 3. F. Blaabjerg, Z. Chen, and S. B. Kjaer, "Power electronics as efficient interface in dispersed power generation systems," IEEE Trans. on Power Electron., vol. 19, no. 4, pp. 1184-1194, Sep. 2004.
- 4. F. Blaabjerg, M. Liserre, and K. Ma, "Power electronics converters for wind turbine systems," IEEE Trans. on Ind. Appl., vol.48, no.2, pp.708-719, Mar-Apr. 2012.
- 5. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "A review of single-phase grid connected inverters for photovoltaic modules," IEEE Trans. on Ind. Appl., vol. 41, no. 5, pp. 1292-1306, Sep. 2005.
- 6. K. Ma, F. Blaabjerg, and M. Liserre, "Thermal analysis of multilevel grid side converters for 10 MW wind turbines under low voltage ride through", IEEE Trans. Ind. Appl., vol. 49, no. 2, pp. 909-921, Mar./Apr. 2013.
- 7. K. Ma, M. Liserre, and F. Blaabjerg, "Reactive power influence on the thermal cycling of multi-MW wind power inverter", IEEE Trans. on Ind. Appl., vol. 49, no. 2, pp. 922-930, Mar./Apr. 2013.
- 8. C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera, and P. Rodriguez, "An overview of the reliability prediction related aspects of high power IGBTs in wind power applications," Journal of Microelectronics Reliability, vol. 51, no. 9-11, pp. 1903-1907, 2011.
- 9. E. Koutroulis and F. Blaabjerg, "Design optimization of transformerless grid-connected PV inverters including reliability," IEEE Trans. on Power Electronics, vol. 28, no. 1, pp. 325-335, Jan. 2013.
- 10. K. B. Pedersen and K. Pedersen, "Bond wire lift-off in IGBT modules due to thermo-mechanical induced stress," in Proc. of PEDG' 2012, pp. 519 526, 2012.
- 11. S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran and P. Tavner, "Condition monitoring for device reliability in power electronic converters: a review," IEEE Trans. Power Electron., vol. 25, no. 11, pp. 2734-2752, Nov., 2010.
- 12. M. Pecht and J. Gu, "Physics-of-failure-based prognostics for electronic products," Trans. of the Institute of Measurement and Control , vol. 31, no. 3-4, pp. 309-322, Mar./Apr., 2009.
- 13. Moore, L. M. and H. N. Post, "Five years of operating experience at a large, utility-scale photovoltaic generating plant," Progress in Photovoltaics: Research and Applications 16(3): 249-259, 2008.
- 14. Reliawind, Report on Wind Turbine Reliability Profiles Field Data Reliability Analysis, 2011.
- 15. D. L. Blackburn, "Temperature measurements of semiconductor devices a review," in Proc. IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 70-80, 2004.
- 16. Avenas, Y., L. Dupont and Z. Kahatir, "Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters -A review," IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3081-3092, Jun., 2010.
- 17. K. Kriegel, A. Melkonyan, M. Galek, and J. Rackles, "Power module with solid state circuit breakers for fault-tolerant applications," in Proc. of Integrated Power Electronics Systems (CIPS), pp. 1-6, 2010.
- 18. ZVEL, Handbook for robustness validation of automotive electrical/electronic modules, Jun. 2008.

References

- 1. K. Ma, F. Blaabjerg, "Loss and thermal redistributed modulation methods for three-level neutral-point-clamped wind power inverter undergoing Low Voltage Ride Through", IEEE Trans. on Industrial Electronics, 2013. (Also in Proc. of ISIE' 2012, pp. 1880-1887, 2012).
- 2. K. Ma, F. Blaabjerg, "Thermal Optimized Modulation Method of Three-level NPC Inverter for 10 MW Wind Turbines under Low Voltage Ride Through," IET Journal on Power Electronics, vol. 5, no. 6, pp. 920-927, 2012.
- 3. K. Ma, F. Blaabjerg, M. Liserre, "Operation and Thermal Loading of Three-level Neutral-Point-Clamped Wind Power Converter under Various Grid Faults," IEEE Trans. on Industry Applications, 2013.
- 4. K. Ma, M. Liserre, F. Blaabjerg, "Reactive Power Influence on the Thermal Cycling of Multi-MW Wind Power Inverter," IEEE Trans. on Industry Applications, vol. 49, no. 2, pp. 922-930, 2013. (Also in Proc. of APEC' 2012, pp. 262-269, 2012.)
- 5. A. Isidori, F.M. Rossi, F. Blaabjerg, K. Ma, "Thermal Loading and Reliability of 10 MW Multilevel Wind Power Converter at Different Wind Roughness Classes," IEEE Trans. on Industry Applications, 2013.
- 6. K. Ma, F. Blaabjerg, M. Liserre, "Electro-thermal model of power semiconductors dedicated for both case and junction temperature estimation," Proc. of PCIM' 2013, 2013.
- 7. K. Ma, F. Blaabjerg, "Reliability-Cost Models for the Power Switching Devices of Wind Power Converters," Proc. of PEDG' 2012, pp.820-827, 2012.
- 8. K. Ma, M. Liserre, F. Blaabjerg, "Lifetime Estimation for the Power Semiconductors Considering Mission Profiles in Wind Power Converter," in Proc. of ECCE' 2013, 2013 (in press).
- 9. F. Blaabjerg, M. Liserre, K. Ma, "Power Electronics Converters for Wind Turbine Systems," IEEE Trans. on Industry Applications, vol. 48, no. 2, pp. 708-719, 2012.
- 10. K. Ma, F. Blaabjerg, "The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter," Energies 5, no. 7: 2559-2577, 2012.

