Digital Power Factor Correction. Recent approaches with and without current sensor

V. M. López Martín, F. J. Azcondo

Univ. Cantabria Santander, Spain {lopezvm, azcondof}@unican.es

Index

- Introduction
- Examples of digital controllers
- Digital controllers with current sensor
- Digital controllers without current sensor
- UC proposal
 - Current estimation
 - Non-linear current control
 - Estimation errors
 - Error compensation
 - Resistor emulator vs. low THDi approach
 - Experimental results
 - Future works
- Conclusions

PFC

AC-to-DC converters meet power quality standards

IEC 61000-3-2

n	Class A (A rms)	Class B (A rms)	Class C (% fun.)	Class A (mA/W)	
3	2.3	3.45	30PF	3.4	
5	1.14	1.71	10	1.9	
7	0.77	1.155	7	1.0	
9	0.40	0.60	5	0.5	
2	1.08	1.62	2	-	
4	0.43	0.645	-	-	
6	0.30	0.45	-	-	
8 <n<40< td=""><td>1.84/n</td><td>2.76/n</td><td>-</td><td>-</td></n<40<>	1.84/n	2.76/n	-	-	

- Passive Valley-fill circuit
 - Low power applications

Christian Brañas, Francisco J. Azcondo, Salvador Bracho. Evaluation of an electronic ballast circuit for HID lamps with passive power factor correction. Proc. of The 28th Annual Conference of IEEE Industrial Electronics Society IECON'02. pp.:371-376

DCM / CCM-DCM

No active current control

- Benefits of digital circuit capabilities broadly discussed
 - Interaction with other circuits (e.g. multi-phase)
 - Implementation of advanced control techniques (adaptive, non-linear, predictive, multi-mode, improved stability)
 - Programmability, configuration
 - System identification, autotuning
 - Lower number of external passive components, including sensors
 - Higher performance (more variables, complexity, protection, wider input and output ranges, dynamic response)
 - Reduced sensitivity to ripple, noise, temperature, aging, process variation ...

Includes a load estimator

Higher performance

V. Rao, A. Jain, K. Reddy, and A. Behal, "Experimental comparison of digital implementations of single-phase PFC controllers," IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 67–78, Jan. 2008.

Reduction of measurements

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 8/68

W. Stefanutti, P. Mattavelli, G. Spiazzi, and P. Tenti, "Digital control of single-phase power factor preregulators based on current and voltage sensing at switch terminals," IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1356–1363, Sept. 2006

- Sampling instants for the switch current in the middle of the switch-on time (CCM is assumed)
- Sampling instants for the switch voltage during off-time and synchronized with the estimated peak input voltage
- PI current controller derived from a given stability condition
- Input voltage estimated with the integral part of the current controller

Improve stability

$$\langle i_L \rangle = \frac{V_g}{R_e} = \frac{V_o}{R_e} (1 - d)$$

$$R_e = \frac{V_{g,rms}^2}{V_o}$$

$$u = \frac{R_e}{V_o} P$$

- Digitalized control law $\rightarrow d[n] = 1 u \cdot i_L[n]$
- Sampling instants for the switch current in the middle of the switch-on time (d[n-1] > 0.5) or switch off time (d[n-1] < 0.5)
- Modification for stability at light loads (d_{max} limited)
- $\Sigma\Delta$ modulator to improve the resolution of u

B. A. Mather and D. Maksimovic, "A simple digital power factor correction rectifier controller," IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 9–19, Jan 2010

Higher performance W. Ryckaert, D. Van de Sype, J. Gijselen, and J. Melkebeek, "A boost PFC converter with programmable harmonic resistance," in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., vol. 3, Mar. 2005, pp. 1621–1627

- Feedforward maintain resistance at high frequency
- Output voltage controller affects first harmonic resistance
- Constant higher harmonic resistance

$$_{ff} = 1 - \frac{V_{in}}{V_o}$$

d

Circuit simplification

- Duty-cycles calculated in advance
- Switching frequency not dependent on DSP speed
- Algorithm to minimize THDi

W. Zhang, G. Feng, Y.-F. Liu, and B. Wu, "New digital control method for power factor correction," IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 987 – 990, Jun. 2006

System identification

S. Moon, L. Corradini, and D. Maksimovic, "Autotuning of digitally controlled boost power factor correction rectifiers," IEEE Transactions on Power Electronics, vol. 26, no. 10, pp. 3006–3018, Oct. 2011

Current acquisition

- Fast and high resolution ADC
 - Expensive
 - Filter required
- One sample $i[k] = \langle i \rangle$
 - Poor noise immunity
 - Accurate timing

Circuit simplification

- Only *dT* is required to compute $\langle i \rangle$
- Advantages of concurrency

A. de Castro, P. Zumel, O. Garcia, T. Riesgo, and J. Uceda, "Concurrent and simple digital controller of an AC/DC converter with power factor correction based on an FPGA," IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 334 – 343, Jan. 2003

- One sample per switching period
- Noise caused by sampling delay
- Alternative edge sampling
 - Rising edge sampling (large duty ratio)
 - Falling edge sampling (small duty ratio)

Improve noise immunity

D. Van de Sype, K. De Gusseme, A. Van den Bossche, and J. Melkebeek, "A sampling algorithm for digitally controlled boost PFC converters," IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 649 – 657, May. 2004

Circuit simplification

- No ADC device
- No low pass filter required
- Also computes input voltage using synchronizing signal
- No synchronization to measure output voltage

K. Hwu, H. Chen, and Y. Yau, "Fully digitalized implementation of PFC rectifier in CCM without ADC," IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 4021–4029, Sept. 2012

Circuit simplification

- No ADC device
- Adapted for CCM and DCM

M. Rodriguez, V. Lopez, F. Azcondo, J. Sebastian, and D. Maksimovic, "Average inductor current sensor for digitally controlled switched-mode power supplies," IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3795 –3806, Aug. 2012.

Motivation

V _{in} (V)	$V_o(V)$	P _o (W)	I _{in} (A)	P _{Rs} (W)
120	400	320	2.68	1.44
120	400	480	4.03	3.24
120	400	640	5.38	5.79
120	400	800	6.74	9.09
120	400	960	8.11	13.1
230	400	320	1.39	0.39
230	400	480	2.09	0.87
230	400	640	2.79	1.56
230	400	800	3.49	2.43
230	400	960	4.19	3.51
230	400	1120	4.89	4.78

-CCM PFC is used high power solutions (200 – 1000 W)

-The designer has to achieve a voltage threshold drop in the current sensor at nominal power

$$-R_{\rm s} \approx 0.2 \ \Omega$$

-Table with the estimated power losses in the current sensor for different output loads and American/European grid

Power electronics Lab. UC. 2012

Y.-K. Lo, H.-J. Chiu, and S.-Y. Ou, "Constant-switchingfrequency control of switch-mode rectifiers without current sensors," IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1172 –1174, Oct. 2000

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 [8/68]

Also, similar approach using

 $d = 1 - \frac{V_{g,peak}}{V} \sin(\omega t - \theta)$, with θ as the control variable

Taking V_F and r_L into account

Artificial v_g using LUT to gain immunity under distorted input voltage

$$L\frac{di}{dt} = V_{g,peak} \sin(\omega t) - (1 - d)V$$

$$L\frac{di}{dt} = V_{g,peak} \sin(\omega t) - V_{g,peak} \sin(\omega t - \theta)$$

with θ small, $L\frac{di}{dt} \cong V_{g,peak} \theta \cos(\omega t)$, and $i = \frac{V_{g,peak} \theta}{\omega L} \sin(\omega t)$

H.C. Chen "Duty phase control for single-phase boost-type SMR" IEEE Trans. on Power Electron. , vol. 23, no. 4. Pp. 1927-1934, Jul. 2008

H.C. Chen, "Single-loop current sensorless control for singlephase boost-type smr," IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 163–171, Jan. 2009

H.C. Chen, C.-C. Lin, and J.-Y. Liao, "Modified Single-Loop Current Sensorless Control for Single-Phase Boost-Type SMR With Distorted Input Voltage," IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1322 –1328, May 2011

- Replace the sensor by an observer defined by an Extended Kalman Filter
 - Feedback to compensate estimation errors
 - EKF 1 obtain v_g (sinusoidal waveform is assumed)
 - Analog and quantization noise are reduced
 - EKF2 defines the plant (observer) and is adjusted by comparing with v_{out}
 - Amplitude and ripple phase are used
 - Deadbeat control

J. Kimball and P. Krein, "A currentsensorless digital controller for active power factor correction control based on kalman filters," in Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008. APEC 2008., Feb. 2008, pp. 1328–1333.

Pre-calculated duty-cycle

- Duty-cycles stored in a digital memory and recalled by a counter. Synch with v_g
 - Good results with just 4 bits or more
 - Uncontrolled (no v_g nor v_o sensing) and controlled version (only v_o sensing)

I. Merfert, "Stored-duty-ratio control for power factor correction," in Fourteenth Annual Applied Power Electronics Conference and Exposition, 1999. APEC '99., vol. 2, Mar. 1999, pp. 1123–1129

- Predictive algorithm with Δv_g feedforward compensation to account for harmonics
- Modified to take into account Δv_o , r_L , r_{on}

$$d[k] = \frac{V_{o,ref} - v_g[k]}{V_{o,ref}} + \frac{\left(i_{ref}[k+1] - i_{ref}[k]\right)\frac{L}{T_s}}{V_{o,ref}} \qquad \qquad d_{update}[k] = d[k] + \Delta d[k]$$
$$i_{ref}[k] = v_{PID}\sin(\omega t_k) \qquad \qquad \Delta d[k] = \frac{\Delta v_g}{V_{o,ref}}$$

W. Zhang, G. Feng, Y.-F. Liu, and B. Wu, "A digital power factor correction (PFC) control strategy optimized for DSP," IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1474– 1485, Nov. 2004.

Pre-calculated duty-cycle

- Experimental acquisition of gate-drive signal sequences for different load conditions
- Operation in programming (with sensor) and programmed (without sensor) modes

A. Finazzi, L. de Freitas, J. Vieira, E. Coelho, V. Farias, and L. Freitas, "Currentsensorless PFC Boost converter with preprogrammed control strategy," in IEEE International Symposium on Industrial Electronics (ISIE), 2011, June 2011, pp. 182–187

- Same technique as in previous slide to calculate the pre-stored duty cycles
- Implementation in FPGA including $\Sigma\Delta$ ADCs

A. Garcia, A. de Castro, O. Garcia, and F. Azcondo, "Precalculated duty cycle control implemented in FPGA for power factor correction," in 35th Annual Conference of IEEE Industrial Electronics, 2009. IECON '09., Nov. 2009, pp. 2955–2960

Pre-calculated duty-cycle

- Pre-calculated duty-cycles divided into three components, d_a , d_b , d_c
- Single ADC for v_o extracting mean value and ripple, v_g comparator for synchronization
- $1-d_a$, $1-d_1$ and d_c values stored in a memory (for nominal v_g and load)

UC proposal

Current sensorless proposals work better with

- Large L
- Low f_{sw}
- Limited v_g range (frequency and amplitude)
- Limited load range
- 250 Commercial analog ICs for CCM PFC controllers Affected by 230 210 Sensorless PFC controller based on RMS Input Voltage [V] 190 current rebuilding concept v_{g} distortion at different degree 170 150 Parasitic elements [59] 130 110 [61] \triangleright R_{on}, R_L, v_d 90 [57] 70 Delays 50 [63], [64] 30 100 200 300 800 900 1000 400 500 600 700 Drivers Power [W]

UC proposal

Universal solution if CCM

- Observer inherited from the HIL concept
- Non-linear controller
- Non-dependence on *L*
- Broad load range
- Universal v_g (conventional grid or avionics)
- Full compensation of the estimation errors
- Resistor emulator and low THDi solutions with distorted v_g
- No reconfiguration or tuning is required
- FPGA implementation

Design framework

Schematic of the development hardware

•Test bench

- 1. Behavioral model of the power converter
 - 1. Inductor model
- 2. PFC controller and ADC (for synthesis)
 - 1. ADC for vg
 - 2. ADC for vo
 - 3. Current estimator (observer)
 - 4. NLC for the PFC $% \left({{{\rm{PFC}}}} \right)$
 - 5. Voltage controller
- 3. Behavioral model analog part of the ADC

- Input current estimated with v_g and v_o .
- Clk determines the calculation speed.

$$i_L(k+1) = i_L(k) + \frac{v_{in}}{L}\Delta t \qquad \qquad i_L(k+1) = i_L(k) + \frac{v_{in} - v_o}{L}\Delta t$$

F. J. Azcondo, A. de Castro, V. M. López and O. García, "Power factor correction without current sensor based on digital current rebuilding", IEEE Transactions on Power Electronics, June 2010.

Non-linear current control

- Control no lineal (NLC) Peakcurrent nonlinear carrier control.
- V_m se obtiene del lazo de tensión.
- El resultado es corrección del factor de potencia en CCM.

$$V_m - V_m \frac{t}{T_s} = r_s i_L \qquad V_m (1 - d) = r_s i_{Lpk} \qquad V_o = \frac{\left| v_g \right|}{1 - d} \qquad i_{Lpk} \approx \left| v_g \right|$$
$$V_m - V_m \frac{t}{T_s} = r_s i_L \frac{t}{T_s} \qquad V_m \frac{(1 - d)}{d} = r_s i_{Lpk} \qquad V_o = \left| v_g \right| \frac{d}{1 - d} \qquad i_{Lpk} \approx \left| v_g \right|$$

Different references by Prof. S. Cuk on OCC , by Profs. R. Erickson, D. Maksimovic & R. Zane on NLC, by K. Smedley on CCM - PFC and implementations by Prof. G. Spiazzi and J. Sebastián (VCCR), entre otros.

- DCM is also estimated.
- Minimum estimated current forced to zero.
- ► Mode_{Dig} shows that DCM is estimated.

Simulation of the algorithm (ideal)

- Left with DCM. Right always in CCM.
- Algorithm not modified for DCM.
- ModelSim simulation (student edition).

Estimation errors

$$\Delta t_{ON}[j] = t_{ON}[j] - t_{ON}^{*}[j] = \Delta t_{on-off} - \Delta t_{off-on} \qquad \qquad i_{g}^{error}[n] = \sum_{j=1}^{j=n} \frac{v_{o}[j]}{L} \Delta t_{ON}[j] \cong \frac{V_{o}}{L} \frac{\Delta t_{on}}{T} t$$

Accumulation of the time error

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 34/68

Estimation errors

Comparison of voltage and time resolution

Equivalent current estimation error generated by $T_{clk} = 10$ ns and due to Nbits = 10

Minimum current estimation error due to the resolution of $\pm 0.5 LSB$

Estimation errors

Quantization effects

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 38/68

Effect of the error in the voltage measurement

Estimation errors

Error of the inductance value

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 41/68

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 42/68

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 43/68

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 44/68

Summary of the effect of the errors

 $\mathbf{V} \cdot \mathbf{s}$ error

Estimated $V \cdot s <$ actual $V \cdot s$ across the inductor

Estimated $V \cdot s >$ actual $V \cdot s$ across the inductor

Feedforward and feedback

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 46/68

 Ideal case: delay and compensation are coincident

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 49/68

- $Mode_{Dig} = "I"$ if the algorithm calculates $i_{in} \leq 0$.
- Mode_{Real}="I" if DCM is reached during the switching period.

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 52/68

 $e_{DCM} = T_{DCM}^{in} - T_{DCM}^{inreb}$

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 55/68

$$e_{DCM} = T_{DCM}^{reb} - T_{DCM}^{in}$$

Plant to control $G_{Tv} = \frac{\partial T_{DCM}^g}{\partial v_{dig}} \cong -\frac{q}{\Gamma}$ around the operation point $qV_{dig} = V_{\beta}$

$$\Gamma = \frac{V_o \pi^2 f_u^2 L}{R} \left(\frac{2}{M_g^2} + \frac{D_{\text{max}}}{K} \right) \qquad I_g = \frac{V_o^2}{RV_g}$$

$$M_g = \frac{V_{g,peak}}{V_o} \quad K = \frac{2Lf_{sw}}{R}$$

V. M. Lopez-Martin, F. J. Azcondo, A. de Castro, "Modeling of a High resolution DCM times feedback loop for Sensorless Boost PFC stages," in Proc. Control and Modeling for Power Electronics (COMPEL), 2013

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 56/68

Operation as a resistor emulator

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 58/68

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 59/68

	Current Harmonics (A)										
V_g	P_{g}	PF	THDi	I_1	I_2	I_3	I_5	I_7	I_9	I_{11}	
	100 F W	0.000	7.57 %	1.932	0.008	0.130	0.031	0.024	0.008	0.014	
	480.5 W	0.992		Limits	0.039	0.575	0.193	0.135	0.097	0.058	
		0.004	C 00 07	2.582	0.011	0.174	0.037	0.033	0.013	0.018	
250 V	030.0 W	0.994	0.99 70	Limits	0.052	0.770	0.258	0.181	0.129	0.077	
250 V	806 7 W	0.007	E EE 07	3.241	0.008	0.177	0.012	0.016	0.007	0.014	
	800.7 W	0.997	0.00 /0	Limits	0.065	0.969	0.324	0.227	0.162	0.097	
	078 4 W	0.000	3 07 %	3.888	0.018	0.086	0.057	0.028	0.023	0.012	
	910.4 W	0.999	3.07 70	Limits	0.078	1.165	0.389	0.272	0.194	0.117	
	492 1 W	0.004	6 20 07	2.117	0.003	0.119	0.048	0.026	0.014	0.018	
	400.1 W	0.994	0.20 70	Limits	0.042	0.632	0.212	0.148	0.106	0.064	
	640.6 W	0.004	6 02 %	2.805	0.005	0.189	0.031	0.023	0.020	0.021	
040	040.0 W	0.994	0.93 %	Limits	0.056	0.836	0.281	0.196	0.140	0.084	
230 V	807.2 W	0.995	5.48 %	3.544	0.005	0.192	0.018	0.022	0.011	0.008	
				Limits	0.071	1.058	0.354	0.248	0.177	0.106	
	978.8 W	0.998	2 78 %	4.294	0.004	0.056	0.096	0.038	0.017	0.015	
			2.10 70	Limits	0.086	1.285	0.429	0.301	0.215	0.129	
	487 5 W	0.993	6.53 %	2.713	0.009	0.144	0.055	0.034	0.010	0.024	
	401.5 W			Limits	0.054	0.808	0.271	0.190	0.136	0.081	
180 V	648 4 W	0.004	0.994 4.91 %	3.620	0.005	0.162	0.062	0.035	0.021	0.018	
100 V	040.4 W	0.994		Limits	0.072	1.080	0.362	0.253	0.181	0.109	
	821 8 W	0.996	3.50 %	4.584	0.004	0.035	0.150	0.044	0.038	0.042	
	021.0 W	0.330		Limits	0.092	1.370	0.458	0.321	0.229	0.138	
	001 F W	0.000	0.01.07	2.776	0.005	0.166	0.056	0.061	0.042	0.038	
100 V	331.5 W	0.992	0.01 %	Limits	0.056	0.826	0.278	0.194	0.139	0.083	
120 V	502 0 W	0.005	F 10 07	4.223	0.004	0.131	0.142	0.104	0.097	0.081	
	503.9 W	0.995	5.18 %	Limits	0.084	1.260	0.422	0.296	0.211	0.127	
	105 / 11	0.001	= 00.07	1.978	0.004	0.084	0.113	0.063	0.051	0.031	
07.17	167.4 W	0.991	7.83 %	Limits	0.040	0.588	0.198	0.138	0.099	0.059	
85 V	240 0 W	0.082	11 19 (7	4.119	0.019	0.293	0.273	0.209	0.123	0.042	
	346.6 W	0.988	11.13 %	Limits	0.082	1.221	0.412	0.288	0.206	0.124	

 $f_{sw} = 144 \text{ kHz}$

-		Results at 230 Vrms - 400 Hz sinusoidal grid											
P_g (W)	PF	THDi~(%)	I_1 (A)	I_3 (A)	I_5 (A)	I_7 (A)	I_9 (A)	I_{11} (A)					
969.4	0.996	1.49	4.32	0.05	0.02	0.03	0.02	0.02					
804.2	0.995	1.66	3.57	0.05	0.02	0.02	0.02	0.02					
631.5	0.992	2.24	2.72	0.06	0.03	0.02	0.01	0.01					
482.1	0.990	3.52	2.13	0.06	0.03	0.02	0.01	0.01					
321.3	0.982	4.35	1.41	0.05	0.03	0.02	0.02	0.01					
	969.4 804.2 631.5 482.1 321.3	969.4 0.996 804.2 0.995 631.5 0.992 482.1 0.990 321.3 0.982	969.4 0.996 1.49 804.2 0.995 1.66 631.5 0.992 2.24 482.1 0.990 3.52 321.3 0.982 4.35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									

Inductors used in the experimental results. Left: $L = 1 \ mH$ (RM12-3C90 core with $R_L = 0.25 \ \Omega$). Right: $L_2 = 1.5 \ mH$ (soft saturation Kool m μ core with $R_{L2} = 0.35 \ \Omega$)

 $V_o = 400 \text{ V}_{dc} \text{ and } L_2 = 1.5 \text{mH} (R_{L2} = 0.35 \Omega).$ (a) $V_g = 230 \text{ V}_{rms}(50 \text{Hz}), P_g = 970 \text{W}.$ (b) $V_g = 85 \text{ V}_{rms}(60 \text{Hz}), P_g = 320 \text{W}.$

International Power Conversion and Drive Colloquium 2013 (IPCDC 2013) Moscow, 1/24/2017 62/68

Expe	Experimental results with $L_2 = 1.5 mH$									
V_g	P_g	PF	THDi							
	460 W	0.975	9.0 %							
250	645 W	0.991	8.5 %							
200	800 W	0.993	9.5 %							
	970 W	0.993	10.5~%							
	460 W	0.984	8.1~%							
230	640 W	0.988	9.1~%							
230	800 W	0.992	9.8~%							
	970 W	0.993	10.5~%							
	323 W	0.980	5.4~%							
180	485 W	0.989	7.1 %							
100	650 W	0.992	8.6 %							
	820 W	0.991	10.5~%							
	497 W	0.996	9.8~%							
120	323 W	0.988	9.8 %							
	497 W	0.996	9.8 %							
85	161 W	0.989	5.0~%							
00	336 W	0.993	9.0~%							

Resistance emulator under different power levels and input voltage distortions.

 $V_g = 230 V$, $f_{sw} = 96 kHz$. With *THDv* =5 % at (a) $P_g = 966.7$ W and (b) $P_g = 800.6$ W. With *THDv* =12 % at (c) $P_g = 965.1$ W and (d) $P_g = 800.9$ W. Sinusoidal behavior under different power levels and input voltage distortions.

 $V_g = 230 V$, $f_{sw} = 96 kHz$. With *THDv* =5 % at (a) $P_g = 964.9$ W and (b) $P_g = 799.5$ W. With *THDv* =12 % at (c) $P_g = 963.1$ W and (d) $P_g = 800.4$ W.

Pure Sinusoidal behavior under distorted voltage											
V_g (V)	P_g (W)	PF	THDv~(%)	THDi~(%)	I_1 (A)	I_3 (A)	I_5 (A)	I_7 (A)	I_9 (A)	I_{11} (A)	
224.8	964.9	0.993	5.05	1.52	4.31	0.03	0.03	0.03	0.02	0.01	
225.6	799.5	0.994	5.03	1.81	3.56	0.04	0.04	0.02	0.01	0.01	
224.7	963.1	0.990	12.16	3.60	4.32	0.13	0.07	0.02	0.03	0.01	
225.5	800.4	0.988	12.17	2.93	3.58	0.06	0.07	0.03	0.03	0.02	

Resistance behavior (traditional PFC controller approach)											
V_g (V)	P_g (W)	PF	THDv~(%)	THDi~(%)	I_1 (A)	I_3 (A)	I_5 (A)	I_7 (A)	I_9 (A)	I_{11} (A)	
224.7	966.7	0.996	4.93	4.38	4.30	0.12	0.14	0.03	0.03	0.04	
225.6	800.6	0.995	4.92	4.64	3.55	0.11	0.12	0.03	0.02	0.03	
224.7	965.1	0.995	11.95	11.25	4.28	0.41	0.16	0.08	0.02	0.01	
225.5	800.9	0.995	11.95	11.25	3.53	0.37	0.14	0.07	0.02	0.01	

Future works

- To extend the Sensorless PFC controller with current rebuilding to other topologies
 - SEPIC
 - Bridgeless and bidirectional Boost PFC rectifiers
 - Three phase bidirectional converters
- Investigate the use of time high resolution modulator
- Incorporate notch filter action in the voltage loop
- Investigate other parameters to achieve the feedback compensation of estimation errors
- Increase the speed of the feedback compensation
- Investigate the use of autotuning circuits
- Improve the PF in DCM

Conclusions

- Active error compensation is required to achieve universal current sensorless controllers
- Extrapolation of voltage data and time feedforward compensation can achieve a satisfactory power factor under limited and static input voltage and load conditions
- Continuous feedforward compensation is required because the switching delays depend on the devices and temperature
- Feedforwad time compensation can also compensate for voltage acquisition errors
- Feedforward time compensation is fast but coarse and cannot reach the best power factor
- It is easy to increase the resolution of the compensation for the difference between the real and estimated V · s using the voltage variable instead of the time variable
- The error between the estimation and detection of the DCM is an adequate variable to achieve the compensation of V \cdot s estimation errors
- Feedback compensation achieve satisfactory power factor at different loads and input voltage
- Combination of feedforward and feedback compensation achieve universal PFC controller without loosing much performance in transients
- The proposal requires no modification for different PFC design operating in CCM

Thank you !
