

Three-Level Neutral-Point-Clamped Quasi-Z-Source Inverter as a New Solution for Renewable Energy Application

TALLINNA TEHNIKAÜLIKOOL

Dept. of Electrical Drives and Power Electronics

1918

TALLINNA TEHNIKAÜLIKOOL UNIVERSITAS RERUM TECHNICARUM REVALIENSIS

Partners

University of Extremadura, Spain E. Romero-Cadaval, C. Roncero-Clemente.

Chernihiv State Technological University, Ukraine S. Stepenko

2

Introduction: renewable energy applications

Introduction: traditional solutions

- Simple and cheap solutions
- Narrow range input voltage operation

Maximum Modulation Index

Boost GRID DC/AC \sim PVDC/DC String P_{PV} **Boost** Buck Low Irradiation Two stage conversion solutions V_{PV} Non Wide range input voltage operation sensitive to grid for aria

Introduction: new trends in PV inverters

- Wide range input operation;
- Input current continuous operation mode;
- Bidirectional operations (for heating);
- Active filtering function in PCC;
- Multilevel inverters;
- Integrated boost and buck solutions.

Introduction: new solutions

Single-stage buck-boost multilevel inverter with two separate Z-source networks Z-source NPC inverter with single impedance network

NPC inverter with single impedance network

Strzelecki, R., "Three-Level Z-Source Neutral-Point-Clamped Inverter,"

Poh Chiang Loh; Feng Gao; Blaabjerg, F.; Shi Yun Charmaine Feng; Kong Ngai Jamies Soon, "Pulsewidth-Modulated Z-Source Neutral-Point-Clamped Inverter" Poh Chiang Lo, Sok Wei Lim, Feng Gao, Frede Blaabjerg, "Three-Level Z-Source Inverters Using a Single LC Impedance Network"

Proposed Topology

ЧЕРНІГІВСЬКИЙ ДЕРЖАВНИЙ ТЕХНОЛОГІЧНИЙ УНІВЕРСИТЕТ

POWER GROUP

ELECTRONICS

Two-Level Quasi-Z-Source Inverter

Three-Level Neutral Point Clamped

Proposed Topology: expected benefits

- One stage energy conversion topology;
- Short circuit immunity;
- Low voltage stress on the semiconductors;
- Bidirectional operations (for heating);
- Improved injected current quality;
- Active filtering functions in PCC.

Proposed Topology 3L-NPC-qZSI

1918

Modulation Technique

ЧЕРНІГІВСЬКИЙ ДЕРЖАВНИЙ ТЕХНОЛОГІЧНИЙ УНІВЕРСИТЕТ

POWER GROUP

ELECTRONICS

Steady State Analyses. CCM conditions

There are two components of current ripple: high switching frequency ripple and 100 Hz (single phase) ripple

 X_{L2}

 X_{C2} =

Steady State Analyses. Equivalent circuits X_{Cl} $X_{Ll} \quad R$ R

Equivalent circuit for 100 Hz (single phase) ripple

Steady State Analyses. Analytical equations

Boost Factor:

Capacitors:

$$V_{OUT_MAX} = V_{IN} \cdot \frac{1 - D_S}{(1 - 2 \cdot D_S)}.$$

$$V_{C2} = V_{C3} = \frac{V_{IN} \cdot (D_S - 1)}{4 \cdot D_S - 2}$$

$$V_{C1} = V_{C4} = \frac{D_S \cdot V_{IN}}{2 - 4 \cdot D_S}$$

Inductances:

$$K_{LL1} = \frac{i_{L1\sim}}{I_{IN}} = \frac{i_{L1\sim} \cdot V_{IN}}{P_{OUT}} = \frac{8}{3 \cdot \pi} \frac{(1 - 2 \cdot D_S) \cdot T^2}{(1 - D_S)(16\pi^2 \cdot C_2 \cdot L_1 - T^2)}.$$

 $K_{CL1} = \frac{v_{C1}}{v_{C1}} = \frac{4}{3 \cdot \pi^2} \cdot \frac{P_{OUT} \cdot (1 - D_S) \cdot T^3}{v_{OUT}^2 \cdot D_S \cdot \left| 16\pi^2 \cdot C_1^2 \cdot L_2 - T^2 \cdot C_1 \right|}$

$$K_{LHI} = \frac{\Delta I_{L1}}{2 \cdot I_{IN}} = \frac{V^2 OUT \cdot (1 - 2 \cdot D_S)}{2 \cdot (1 - D_S) \cdot L_I \cdot P_{OUT}} T_S \cdot D_S$$

Experimental Prototype

ЧЕРНІГІВСЬКИЙ ДЕРЖАВНИЙ ТЕХНОЛОГІЧНИЙ УНІВЕРСИТЕТ

Control Unit (FPGA)	Cyclone IV EP4CE15E22C8		
Input DC voltage U_N	220-440 V		
Output power	2800 W		
Nominal output AC voltage U_{OUT}	230 V		
Capacitance value of the capacitors C_l, C_d	4000uF		
Capacitance value of the capacitors C_2 , C_3	1000 uF		
Inductance value of the inductors L_1L_4	145uH		
Inductance of the inverter filter inductor L_{fl}	560uH		
Inductance of the grid filter inductor L_{f^2}	200 uH		
Capacitance of the filter capacitor C_f	0,47aF		
Switching frequency	100 kHz		
PV panels	LDK 185D		

POWER GROUP

ELECTRONICS

ITT

Selected Components: transistors

FCH47N60NF (FAIRCHILD)

TALLINNA TEHNIKAÜLIKOOL UNIVERSITAS RERUM TECHNICARUM REVALIENSIS

- $R_{DS}(on) = 57.5m\Omega$, $I_D = 23.5A$
- Total Gate Charge 121 nC
- dv/dt =50 V/ns
- Reverse Recovery Time 169 ns
- Reverse Recovery Charge 1.3 μC
- IPW65R080CFD (Infineon)

TALLINNA TEHNIKAÜLIKOOL

ERSITAS RERUM TECHNICARUM REVALIENSIS

Selected Components: qZS and clamped diodes

C3D20060D (Cree)

Repetitive Peak Reverse Voltage V600V

Continuous Forward Current 28 A

Total Capacitive Charge 20 nC

Experimental results

Experimental results. Losses distribution.

Experimental Results in Spain with PV panels

Working Point	1	2	3	4
Vpv, V	227	234	241	249
Power, W	1200	1500	1800	2100
THD, %	2.2	1.8	1.5	1.1
Efficiency, %	92	93	94	93

7x2 serial panels

Conclusions:

- 3L-NPC qZS single phase inverter was proposed and designed (3kW).
- Features: wide input voltage range (220V 450V), CCM of the input current (20% ripple).
- A sufficiently high converter efficiency (94-97%) was achieved through the use of modern electronic components, such as Schottky diodes based on silicon carbide and power switches with low gate charge and barrier capacitance reverse.

Further Research Activity

Thank you for attention!

Questions?

🌔 DoRa